top of page

Publications

Background

Currently, there is an urgent need for efficient tools to assess the diagnosis of COVID-19 patients. In this paper, we present feasible solutions for detecting and labeling infected tissues on CT lung images of such patients. Two structurally-different deep learning techniques, SegNet and U-NET, are investigated for semantically segmenting infected tissue regions in CT lung images.

Methods

We propose to use two known deep learning networks, SegNet and U-NET, for image tissue classification. SegNet is characterized as a scene segmentation network and U-NET as a medical segmentation tool. Both networks were exploited as binary segmentors to discriminate between infected and healthy lung tissue, also as multi-class segmentors to learn the infection type on the lung. Each network is trained using seventy-two data images, validated on ten images, and tested against the left eighteen images. Several statistical scores are calculated for the results and tabulated accordingly.

Results

The results show the superior ability of SegNet in classifying infected/non-infected tissues compared to the other methods (with 0.95 mean accuracy), while the U-NET shows better results as a multi-class segmentor (with 0.91 mean accuracy).

Conclusion

Semantically segmenting CT scan images of COVID-19 patients is a crucial goal because it would not only assist in disease diagnosis, also help in quantifying the severity of the illness, and hence, prioritize the population treatment accordingly. We propose computer-based techniques that prove to be reliable as detectors for infected tissue in lung CT scans. The availability of such a method in today’s pandemic would help automate, prioritize, fasten, and broaden the treatment of COVID-19 patients globally.

Positioning systems in indoor environments are of a great concern in automation and robotics domains where performing critical tasks requires precision. However, to make these systems widely applicable they must be cost-effective. The objective of this paper is to develop two different 3D positioning systems based on neural networks and adaptive neuro-fuzzy techniques. Sample images of a recognizable object were taken using three low-cost cameras as training and testing data for these systems. Positioning results of the proposed systems are compared with results of the classical geometrical method. The results show positioning errors on the scale of millimeters and the neural network system produces the smallest error.

bottom of page